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We demonstrate the mathematical equivalence of two commonly used
forms of firing rate model equations for neural networks. In addition, we
show that what is commonly interpreted as the firing rate in one form of
model may be better interpreted as a low-pass-filtered firing rate, and we
point out a conductance-based firing rate model.

At least since the pioneering work of Wilson & Cowan (1972), it has been
common to study neural circuit behavior using rate equations—equations
that specify neural activities simply in terms of their rates of firing ac-
tion potentials, as opposed to spiking models, in which the actual emis-
sions of action potentials, or spikes, are modeled. Rate models can be de-
rived as approximations to spiking models in a variety of ways (Wilson
& Cowan, 1972; Mattia & Del Giudice, 2002; Shriki, Hansel, & Sompolin-
sky, 2003; Ermentrout, 1994; La Camera, Rauch, Luscher, Senn, & Fusi,
2004; Aviel and Gerstner, 2006; Ostojic & Brunel, 2011; reviewed in Er-
mentrout & Terman, 2010; Gerstner & Kistler, 2002; and Dayan & Abbott,
2001).

Two forms of rate model most commonly used to model neural circuits
are the following, which we will refer to as the v-equation and r-equation
respectively:

τ
dv
dt

= −v + Ĩ + Wf(v), (1)

τ
dr
dt

= −r + f(Wr + I). (2)
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26 K. Miller and F. Fumarola

Here, v and r are each vectors representing neural activity, with each el-
ement representing the activity of one neuron in the modeled circuit. v is
commonly thought of as representing voltage, while r is commonly thought
of as representing firing rate (probability of spiking per unit time). f(x) is
a nonlinear input-output function that acts element-by-element on the el-
ements of x, that is, it has ith element (f(x))i = f (xi) for some nonlinear
function of one variable f. f typically takes such forms as an exponential,
a power law, or a sigmoid function, and f (vi) is typically regarded as a
static nonlinearity converting the voltage of the ith cell vi to the cell’s in-
stantaneous firing rate. W is the matrix of synaptic weights between the
neurons in the modeled circuit. Ĩ and I are the vectors of external inputs
to the neurons in the v or r networks, respectively, which may be time
dependent. In the appendix, we illustrate a simple heuristic derivation of
the v-equation, starting from the biophysical equation for the voltages v.
Along the way, we also point to a conductance-based version of the rate
equation.

When developing a rate model of a network, it can be unclear which form
of equation to use or whether it makes a difference. Here we demonstrate
that the choice between equations 1 and 2 makes no difference: the two
models are mathematically equivalent, and so will display the same set of
behaviors. It has been noted previously (Beer, 2006) that when I is constant
and W is invertible, the two equations are equivalent under the relationship
v = Wr + I, Ĩ = I. We generalize this result to demonstrate the equivalence
of the two equations when W is not invertible and inputs may be time
dependent.

The v-equation is defined when we specify the input across time, Ĩ(t),
and the initial condition v(0); we will call the combination of these and
equation 1 a v-model. The r-equation is defined when we specify I(t) and
r(0); we will call the combination of these and equation 2 an r-model. We
will show that any v-model can be mapped to an r-model and any r-model
can be mapped to a v-model such that the solutions to equations 1 and 2
satisfy v = Wr + I.

As we will see, the inputs in equivalent models are related by Ĩ = I + τ dI
dt ,

or τ dI
dt = −I + Ĩ. That is, I is a low-pass-filtered version of Ĩ. Note that there

is an equivalence class of I, parameterized by I(0), that all correspond to
the same Ĩ under this equivalence. We assume that the equivalence class
has been specified, that is, Ĩ has been specified (if I has been specified, Ĩ
can be found as Ĩ = I + τ dI

dt ). Then a v-model is defined by specifying v(0),
while an r-model is defined by specifying the set {r(0), I(0)}. If W is D × D,
then v(0) is D-dimensional, while {r(0), I(0)} is 2D-dimensional, so we can
guess that the map from r to v takes a D-dimensional space of r-models to a
single v-model, and conversely the map from v to r takes a single v-model
back to a D-dimensional space of r-models, and we will show that this is
true.
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Mathematical Equivalence of Firing Rate Models 27

We first show that if r evolves according to the r-equation, then Wr + I
evolves according to the v-equation. Setting v = Wr + I, we find:

τ
dv
dt

= Wτ
dr
dt

+ τ
dI
dt

= W(−r + f (Wr + I)) + τ
dI
dt

(3)

= −(v − I) + W f (v) + τ
dI
dt

(4)

= −v + Ĩ + W f (v). (5)

Therefore, if v evolves according to the v-equation and r evolves according
to the r-equation and v(0) = Wr(0) + I(0), then, since the v-equation propa-
gates Wr + I forward in time, v = Wr + I at all times t > 0. We will thus have
established the desired equivalence if we can solve v(0) = Wr(0) + I(0)

for any v-model, specified by v(0), or for any r-model, specified by
{r(0), I(0)}.

Note that, as expected, a D-dimensional space of r-models converges on
the same v-model. Since {r(0), I(0)} forms a 2D-dimensional space, which
is constrained by the D-dimensional equation v(0) = Wr(0) + I(0), the D-
dimensional subspace of r-models {r(0), I(0)} that satisfy this equation all
converge on the same v-model.

To go from an r-model to a v-model is straightforward: we simply set
v(0) = Wr(0) + I(0). To go from a v-model to an r-model, we first define
some useful notation:1

� NW is the null space of W, that is, the subspace of all vectors that W
maps to 0. PN is the projection operator into NW.

� NW
⊥ is the subspace perpendicular toNW. This is the subspace spanned

by the rows of W. PN⊥ is the projection operator into NW
⊥ .

� RW is the range of W, that is, the subspace of vectors that can be
written Wx for some x. This is the subspace spanned by the columns
of W. PR is the projection operator into RW.

� RW
⊥ is the subspace perpendicular toRW, also called the left null space.

PR⊥ is the projection operator into RW
⊥ .

For any vector x, we define xN ≡ PNx, xN⊥ ≡ PN⊥x, xR ≡ PRx, xR⊥ ≡ PR⊥x.
We rely on the fact that x = xN + xN⊥ = xR + xR⊥.

1If W is normal, the eigenvectors are orthogonal, so the null space is precisely the
space orthogonal to the range: PN = PR⊥ and PN⊥ = PR. However, if W is nonnormal,
then vectors orthogonal to the null space can be mapped into the null space; the range
always has the dimension of the full space minus the dimension of the null space, but it
need not be orthogonal to the null space.
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Given a v-model, the equation v(0) = Wr(0) + I(0) has a solution if and
only if v(0) − I(0) ∈ RW, which is true if and only if vR⊥(0) − IR⊥(0) = 0,2

so we must choose

IR⊥(0) = vR⊥(0). (9)

Letting DR be the dimension of RW and DN the dimension of NW, the
fundamental theorem of linear algebra states that DR + DN = D. So IR⊥(0)

has dimension DN. This leaves unspecified IR(0), which has dimension DR.
To solve for rN⊥(0), we note that the equation v = Wr + I can equiva-

lently be written v = WrN⊥ + I (because WrN = 0, so Wr = WrN⊥). That is,
knowledge of v specifies only rN⊥. We define W−1 to be the Moore-Penrose
pseudo-inverse of W. This is the matrix that gives the one-to-one mapping
ofRW intoNW

⊥ that inverts the one-to-one mapping ofNW
⊥ toRW induced by

W, and that maps all vectors in RW
⊥ to 0.3 The pseudo-inverse has the prop-

erty that W−1W = PN⊥ while WW−1 = PR. Then we can solve for rN⊥(0) as

rN⊥(0) = W−1(v(0) − I(0)) = W−1(vR(0) − IR(0)). (10)

This is a DR-dimensional equation for the 2DR-dimensional set of un-
knowns {rN⊥(0), IR(0)}, so it determines DR of these parameters and leaves
DR free. For example, it could be solved by freely choosing IR(0) and then
setting rN⊥(0) = W−1(vR(0) − IR(0)), or by freely choosing rN⊥(0) and then
setting IR(0) = vR(0) − WrN⊥(0).

Equations 10 and 9 together ensure the equality v(0) = Wr(0) + I(0).
Applying W to both sides of equation 10 yields vR(0) = WrN⊥(0) + IR(0) =
Wr(0) + IR(0). This states that the equality holds within the range of W;

2Note that the condition v − I ∈ RW, meaning that v = Wr + I can be solved, is true
for all time if it is true in the initial condition. We compute:

τ
d(v − I)

dt
= −v + Ĩ + W f (v) − τ

dI
dt

(6)

= −v + I + W f (v) (7)

Applying PR⊥ to equation 7 and noting that PR⊥W = 0, we find

τ
d(vR⊥ − IR⊥)

dt
= −(vR⊥ − IR⊥). (8)

If v(0) − I(0) ∈ RW, then vR⊥(0) − IR⊥(0) = 0, and hence vR⊥ − IR⊥ = 0 at all subsequent
times so v − I ∈ RW at all subsequent times. Note also that for any initial conditions, the
condition v(t) − I(t) ∈ RW is true asymptotically as t → ∞.

3If the singular value decomposition of a matrix M is M = USV†, where S is the
diagonal matrix of singular values and U and V are unitary matrices, then its pseudo-
inverse is M−1 = VS̃U†, where S̃ is the pseudoinverse of S, obtained by inverting all
nonzero singular values in S.
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Mathematical Equivalence of Firing Rate Models 29

orthogonal to the range of W, we have PR⊥Wr = 0 and vR⊥(0) = IR⊥(0).
Together, these yield v(0) = Wr(0) + I(0).

Finally, we can freely choose rN(0), which has no effect on the equation
v(0) = Wr(0) + I(0). rN(0) has DN dimensions, so we have freely chosen
DR + DN = D dimensions in finding an r-model that is equivalent to the v-
model. That is, we have found a D-dimensional subspace of such r-models—
those that satisfy v(0) = Wr(0) + I(0).

To summarize, we have established the equivalence between r-models
and v-models. For each fixed choice of W, τ , and Ĩ(t), an r-model is specified
by {r(0), I(0)} and equation 2, while a v-model is specified by v(0) and
equation 1. The equivalence is established by setting v(0) = Wr(0) + I(0),
which yields a D-dimensional subspace of equivalent r-models for a given
v-model. Under this equivalence, v obeys equation 1, r obeys equation 2,
and the two are related at all times by v = Wr + I, with τ dI

dt = −I + Ĩ. To go
from an r-model to its equivalent v-model, we simply set v(0) = Wr(0) +
I(0). To go from a v-model to one of its equivalent r-models, we set IR⊥(0) =
vR⊥(0), freely choose rN(0), and freely choose {rN⊥(0), IR(0)} from the DR-
dimensional subspace of such choices that satisfy rN⊥(0) = W−1(vR(0) −
IR(0)), where W−1 is the pseudoinverse of W.

Finally, note that equation 2 can be written τ dr
dt = −r + f(v). That is, if

we regard v as a voltage and f (v) as a firing rate, as suggested by the
“derivation” in the appendix, then r is a low-pass-filtered version of the
firing rate, just as I is a low-pass-filtered version of the input Ĩ.

Appendix: Simple “Derivation” of the v-Equation

As an example of an unsophisticated and heuristic derivation of these equa-
tions (more sophisticated derivations can be found in the references in the
main text), the v-equation can be “derived” as follows. We start with the
equation for the membrane voltage of the ith neuron:

Ci
dvi

dt
=

∑

j

gi j(Ei j − vi), (A.1)

where Ci is the capacitance of the ith neuron and gij is the jth conductance
onto the neuron, with reversal potential Eij. We assume that the gij’s are com-
posed of an intrinsic conductance, gL

i , with reversal potential EL
i ; extrinsic

input gext
i with reversal potential Eext

i ; and within-network synaptic conduc-
tances, with g̃i j representing input from neuron j with reversal potential Ẽi j.
Dividing by

∑
k gik and defining τi(t) = Ci/

∑
k gik gives

τi(t)
dvi

dt
= −vi +

gL
i EL

i + gext
i Eext

i + ∑
j g̃i jẼi j

gL
i + gext

i + ∑
k g̃ik

. (A.2)
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We now make a number of further simplifying assumptions. We assume
that g̃i j is proportional to the firing rate rj of neuron j, with proportional-

ity constant W̃i j ≥ 0: g̃i j = W̃i jr j. This ignores synaptic time courses, among
other things. We assume that rj is given by the static nonlinearity r j = f (v j)

(see Miller & Troyer, 2002; Hansel & van Vreeswijk, 2002; Priebe, Mechler,
Carandini, & Ferster, 2004, for such a relationship between firing rate and
voltage averaged over a few tens of milliseconds). We assume synapses
are either excitatory with reversal potential EE or inhibitory with reversal
potential EI, and linearly transform the units of voltage so that EE = 1 and
EI = −1. We define Wi j = W̃i jE j. This is now a synaptic weight that is posi-
tive for excitatory synapses and negative for inhibitory synapses. We define
Ĩi ≡ gL

i EL
i + gext

i Eext
i and define gi ≡ gL

i + gext
i . This yields the conductance-

based rate equation,

τi(t)
dvi

dt
= −vi +

Ĩi + ∑
j Wi j f (v j)

gi + ∑
k |Wik| f (vk)

, (A.3)

with τi(t) = Ci/
(
gi + ∑

k |Wik| f (vk)
)
.

Finally, we assume that the total conductance, represented by the de-
nominator in the last term of equation A.3, can be taken to be constant, for
example, if gL

i is much larger than synaptic and external conductances or if
inputs tend to be push-pull, with withdrawal of some inputs compensating
for addition of others. We absorb the constant denominator into the defini-
tions of Ĩi and Wij and note that this also implies that τi is constant, to arrive
finally at the v-equation:

τi
dvi

dt
= −vi +

∑

j

Wi j f (v j) + Ĩi. (A.4)

Acknowledgments

This work was supported by R01-EY11001 from the National Eye Institute
and by the Gatsby Charitable Foundation through the Gatsby Initiative in
Brain Circuitry at Columbia University.

References

Aviel, Y., & Gerstner, W. (2006). From spiking neurons to rate models: A cascade
model as an approximation to spiking neuron models with refractoriness. Phys.
Rev. E, 73, 051908.

Beer, R. D. (2006). Parameter space structure of continuous-time recurrent neural
networks. Neural Comput., 18, 3009–3051.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/24/1/25/857708/neco_a_00221.pdf by C
olum

bia U
niversity Libraries user on 27 February 2025



Mathematical Equivalence of Firing Rate Models 31

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. Cambridge, MA: MIT Press.
Ermentrout, B. (1994). Reduction of conductance based models with slow synapses

to neural nets. Neural Comput., 6, 679–695.
Ermentrout, G. B., & Terman, D. H. (2010). Mathematical foundations of neuroscience.

New York: Springer.
Gerstner, W., & Kistler, W. (2002). Spiking neuron models. Cambridge: Cambridge

University Press.
Hansel, D., & van Vreeswijk, C. (2002). How noise contributes to contrast invariance

of orientation tuning in cat visual cortex. J. Neurosci., 22, 5118–5128.
La Camera, G., Rauch, A., Luscher, H. R., Senn, W., & Fusi, S. (2004). Minimal models

of adapted neuronal response to in vivo–like input currents. Neural Comput., 16,
2101–2124.

Mattia, M., & Del Giudice, P. (2002). Population dynamics of interacting spiking
neurons. Phys. Rev. E, 66, 051917.

Miller, K. D., & Troyer, T. W. (2002). Neural noise can explain expansive, power-law
nonlinearities in neural response functions. J. Neurophysiol., 87, 653–659.

Ostojic, S., & Brunel, N. (2011). From spiking neuron models to linear-nonlinear
models. PLoS Comput. Biol., 7, e1001056.

Priebe, N., Mechler, F., Carandini, M., & Ferster, D. (2004). The contribution of spike
threshold to the dichotomy of cortical simple and complex cells. Nat. Neurosci.,
7(10), 1113–1122.

Shriki, O., & Hansel, D., & Sompolinsky, H. (2003). Rate models for conductance-
based cortical neuronal networks. Neural Comput., 15, 1809–1841.

Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in local-
ized populations of model neurons. Biol. Cybern., 12, 1–24.

Received July 6, 2011; accepted July 10, 2011.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/24/1/25/857708/neco_a_00221.pdf by C
olum

bia U
niversity Libraries user on 27 February 2025


